I wrote in December about how ChatGPT could be improved by routing relevant questions to Wolfram Alpha — i.e. neuro-symbolic AI. It sounds like Stephen Wolfram has similar thoughts:
There’ll be plenty of cases where “raw ChatGPT” can help with people’s writing, make suggestions, or generate text that’s useful for various kinds of documents or interactions. But when it comes to setting up things that have to be perfect, machine learning just isn’t the way to do it—much as humans aren’t either.
[…]
ChatGPT does great at the “human-like parts”, where there isn’t a precise “right answer”. But when it’s “put on the spot” for something precise, it often falls down. But the whole point here is that there’s a great way to solve this problem—by connecting ChatGPT to Wolfram|Alpha and all its computational knowledge “superpowers”.
[…]
Inside Wolfram|Alpha, everything is being turned into computational language, and into precise Wolfram Language code, that at some level has to be “perfect” to be reliably useful. But the crucial point is that ChatGPT doesn’t have to generate this. It can produce its usual natural language, and then Wolfram|Alpha can use its natural language understanding capabilities to translate that natural language into precise Wolfram Language.
These are exactly the types of informal integrations I expect to see in spades once we finally get a viable open source alternative to GPT.