Imagine that you’re about to lose your access to the Internet forever. In preparation, you plan to create a compressed copy of all the text on the Web, so that you can store it on a private server. Unfortunately, your private server has only one per cent of the space needed; you can’t use a lossless compression algorithm if you want everything to fit. Instead, you write a lossy algorithm that identifies statistical regularities in the text and stores them in a specialized file format…
Now, losing your Internet access isn’t quite so terrible; you’ve got all the information on the Web stored on your server. The only catch is that, because the text has been so highly compressed, you can’t look for information by searching for an exact quote; you’ll never get an exact match, because the words aren’t what’s being stored. To solve this problem, you create an interface that accepts queries in the form of questions and responds with answers that convey the gist of what you have on your server.
What I’ve described sounds a lot like ChatGPT, or most any other large language model. Think of ChatGPT as a blurry JPEG of all the text on the Web. It retains much of the information on the Web, in the same way that a JPEG retains much of the information of a higher-resolution image, but, if you’re looking for an exact sequence of bits, you won’t find it; all you will ever get is an approximation.
This is just as much of an endorsement of large language models as it is a criticism. How else could you describe human learning and memory if not a “lossy algorithm” encoding past experiences?